RESEARCH PAPER
Enhancing maritime infrastructure security through AI-driven naval drone operations in the Southern Baltic Sea
More details
Hide details
1
Military Department, War Studies University, Al. Chruściela ‘Montera’ 103, 00-910, Warsaw, Poland
Submission date: 2025-06-03
Final revision date: 2025-09-30
Acceptance date: 2025-10-07
Online publication date: 2025-12-23
Corresponding author
Krzysztof Pająk
Military Department, War Studies University, A. Chruściela "Montera" 103, 00-910, Warsza, Poland
KEYWORDS
TOPICS
ABSTRACT
This study aims to explore the potential of artificial intelligence (AI)-supported drone operations as a proactive response to increasing maritime threats, particularly in the southern Baltic Sea, and to analyse the applicability of autonomous systems in protecting ports, offshore platforms, subsea cables, and pipelines under conditions of spatial congestion and geopolitical risk. This study adopts a qualitative analytical approach, grounded in the review of relevant literature, official reports, and statistical data from a variety of international and academic sources. The research process involves the analysis of existing materials to identify key patterns and trends related to maritime infrastructure and security in the southern Baltic Sea. Through inference, the study aims to draw reasoned conclusions from available data, particularly where direct evidence was limited due to the emerging nature of the subject matter. AI-enhanced naval drones can significantly improve the monitoring and protection of maritime infrastructure through continuous, real-time, and autonomous operations. The deployment of such systems enables faster threat detection and decision-making, thereby enhancing the resilience of critical assets, such as wind farms, subsea cables, and ports. Overall, this information should contribute to national defence and stability. In the face of rapid transformation in the southern Baltic Sea, driven by increasing maritime traffic, energy demands, and offshore development, the integration of AI and autonomous systems into maritime operations is essential in order to ensure effective spatial and security management. Unmanned vehicles, supported by AI, will become a cornerstone of maritime defence, enabling constant surveillance and rapid response to evolving hybrid threats.
FUNDING
This research received no external funding.
REFERENCES (59)
1.
Anderson K., Shabaga B.M., Wich S., Fink G., Barczyk M., Hodgson J. and Chabot D. (2023) ‘New topic horizons for drone systems and applications’, Drone Systems and Applications, 11, pp. 1–7. doi: 10.1139/dsa-2023-0019.
2.
Baltic and International Maritime Council (BIMCO) (2024) Average containership set to surpass 5,000 TEU in 2025, 14 March. Available at: https://www.worldcargonews.com/news/2024/03/bimco-average-containership-set-to-surpass-5000-teu-in-2025 (Accessed: 18 May 2025).
3.
Bartosiewicz A., Kucharski A. and Miszczyński P. (2024) ‘Efficiency of maritime container terminals in the Baltic Sea region using data envelopment analysis slack-based model’, Research in Transportation Business & Management, 56, 101166. doi: 10.1016/j.rtbm.2024.101166.
4.
Bojke A, Galer-Tatarowicz K. Flasińska A., Chybicki A., Łubniewski Z., Kargol J. Ostrowska D., Cichowska A. (2024) ‘The Application of a Mobile Unmanned Device for Monitoring Water and Sediment Pollution in the Port of Gdynia’, Water, 16 (2), p. 252. doi: 10.3390/w16020252.
5.
Bueger Ch., Liebetrau T. and Franken J. (2022) Security threats to undersea communications cables and infrastructure—Consequences for the EU, June. Available at: https://www.europarl.europa.eu/RegData/etudes/IDAN/2022/702557/EXPO_IDA(2022)702557_EN.pdf (Accessed: 23 July 2025).
6.
Colin M. (2011) Underwater detection, classification and localisation: Improving the capabilities of towed sonar arrays. Doctoral thesis. The Hague: Netherlands Organisation for Applied Scientific Research (TNO).
7.
Drzycimski I. (2000) ‘The Słupsk Furrow as a marine protected area in the Baltic’, Oceanological Studies, 29, pp. 33–42.
8.
Ehler C., Zaucha J. and Gee K. (2019) ‘Maritime/marine spatial planning at the interface of research and practice’, in Zaucha J., Gee K. (eds.) Maritime spatial planning. Cham: Palgrave Macmillan, doi: 10.1007/978-3-319-98696-8_1.
9.
Escobar-Sánchez G., Markfort G., Berghald M., Ritzenhofen L. and Schernewski G. (2022) ‘ Aerial and underwater drones for marine litter monitoring in shallow coastal waters: Factors influencing item detection and cost-efficiency’, Environmental Monitoring Assessment, 194, Article. 863. pp. 1–28. doi: 10.1007/s10661-022-10519-5.
10.
European Commission (2023) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, delivering on the EU offshore renewable energy ambitions, Brussels. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52023DC0668 (Accessed: 25 July 2025).
11.
Eurostat (2025a) Maritime vessels statistics—Statistics explained, January. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?oldid=474495 (Accessed: 16 May 2025).
12.
Eurostat (2025b) Population on 1 January by age groups and sex—Cities and greater cities, Available at: https://ec.europa.eu/eurostat/databrowser/view/urb_cpop1/default/table?lang=en (Accessed: 16 September 2025).
13.
Fernandez-Figueroa E.G., Rogers S.R. and Neupane D. (2025) ‘Drones and deep learning for detecting fish carcasses during fish kills’, Drones, 9(7), 482. doi: 10.3390/drones9070482.
14.
flexRISK (2013) Nuclear site fosmark, 25 May. Available at: https://flexrisk.boku.ac.at/en/sites/fors/index.html (Accessed: 28 May 2025).
15.
Fortum (2025) Nuclear power plants. Available at: https://www.fortum.com/energy-production/nuclear-power/plants (Accessed: 28 May 2025).
16.
Grelowska G. (2016) ‘Study of seasonal acoustic properties of sea water in selected waters of the Southern Baltic’, Polish Maritime Research 23, pp. 27–28. doi: 10.1515/pomr-2016-004.
17.
Hakola V. (2020) Vessel tracking (AIS), vessel metadata and dirway datasets, IEEE Dataport. 10.21227/j3b5-es69
18.
Hatton B. (2024) ‘Meet Ukraine’s small but lethal weapon lifting morale: Unmanned sea drones packed with explosives’, AP News, 5 March. Available at: https://apnews.com/article/russia-ukraine-war-sea-drones-explosives-1b0974b77e32d6b5e9409ba3451716c6 (Accessed: 16 September 2025).
19.
HELCOM (2018) State of the Baltic Sea—Second HELCOM holistic assessment 2011–2016. Helsinki: Baltic Marine Environment Protection Commission (HELCOM), Available at: https://helcom.fi/wp-content/uploads/2019/06/BSEP155.pdf (Accessed: 22 July 2025).
20.
HELCOM (2023) State of the Baltic Sea. Third HELCOM holistic assessment 2016–2021. Baltic Sea Environment Proceedings n°194. Helsinki: HELCOM, Available at: https://helcom.fi/wp-content/uploads/2023/10/State-of-the-Baltic-Sea-2023.pdf (Accessed: 22 July 2025).
21.
Interfax (2022) Population grows to 13 mln in Moscow, 5.6 mln in St. Petersburg – Rosstat, based on population census. Available at: https://interfax.com/newsroom/top-stories/78020/ (Accessed: 22 September 2025).
22.
International Energy Agency (IEA) (2025) Global energy review 2025, March. Available at: https://iea.blob.core.windows.net/assets/5b169aa1-bc88-4c96-b828-aaa50406ba80/GlobalEnergyReview2025.pdf (Accessed: 24 July 2025).
23.
International Hydrographic Organization (IHO) (1953) Limits of oceans and seas, 3rd edn. Available at: https://iho.int/uploads/user/pubs/standards/s-23/S-23_Ed3_1953_EN.pdf (Accessed: 21 July 2025).
24.
Interreg South Baltic Programme (2025) About the programme, 29 January. Available at: https://southbaltic.eu/programme/about-the-programme/ (Accessed: 18 May 2025).
25.
Jakobsson M., Stranne C., O’Regan M., Greenwood S.L., Gustafsson B., Humborg C. and Weidner E. (2019) ‘Bathymetric properties of the Baltic Sea’, Ocean Science, 15(4), pp. 905–924. doi: 10.5194/os-15-905-2019.
26.
Jalkanen J.P., Majamäki E., Heikkilä M. and Johansson L. (2024) Emissions from Baltic Sea shipping in 2023, HELCOM Baltic Sea Environment fact sheets 2024. Available at: https://helcom.fi/wp-content/uploads/2024/11/Emissions-from-Baltic-Sea-shipping-in-2023-2024.pdf (Accessed: 24 July 2025).
27.
Jin H.S., Cho H., Lee J.H., Jiafeng H., Kim M.J., Oh J.Y. and Choi S. (2020) ‘Study on unmanned hybrid unmanned surface vehicle and unmanned underwater vehicle system’, Journal Ocean Engineering Technology, 34(6), pp. 475–480. doi: 10.26748/KSOE.2020.036.
28.
Kadlec N. (2025) ‘Artificial intelligence and autonomous systems in warfighting at sea’, International Law Studies, 106, p. 497. Stockton Center for International Law.
29.
Kale S. (2023) ‘Developments in Unmanned Surface Vehicles (USVs): A review’, International Conference on Applied Engineering and Natural Sciences, All Sciences Proceedings, 1(1), pp. 596–600. doi: 10.59287/icaens.1064.
30.
Kerbiriou R. (2024) ‘Modernisation of container ship fleets: State of play and consequences for the Baltic Sea’, TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 18(1), pp. 211–217. doi: 10.12716/1001.18.01.22.
31.
Klusek Z. and Lisimenka A. (2016) Seasonal and diel variability of the underwater noise in the Baltic Sea, Journal of the Acoustical Society of America, 139(4), p. 1537. doi: 10.1121/1.4944875.
32.
Liu Y., Zhang J., Sui B. and Zhang Y. (2024) ‘Underactuated unmanned surface vehicles formation of obstacle avoidance and assembly: A disturbed fluid-based solution’, Measurement and Control, 57(7), pp. 992–1003. doi: 10.1177/00202940241226854.
33.
Liu Z., Zhang Y., Yi X. and Yuan C. (2016) Unmanned surface vehicles: An overview of developments and challenges, Annual Reviews in Control, 42, pp. 1–15. doi: 10.1016/j.arcontrol.2016.04.018.
34.
Marine Link (2024) Ships above 12,000 TEU drive 100% increase in average ship size, 13 March. Available at: https://www.marinelink.com/news/ships-above-teu-drive-increase-average-512233 (Accessed: 18 May 2025).
35.
Miętkiewicz R. (2023) Autonomous systems in maritime operations. Gdynia: Wydawnictwo Akademickie AMW.
36.
Miętkiewicz R. (2025) ‘Hybrid threats in the Baltic Sea. The results of analysis of countermeasure options’, Terrorism–Studies, Analyses, Prevention (Terroryzm–Studia, Analizy, Prewencja), Special Issue, pp. 35-71. doi: 10.4467/27204383TER.25.002.21505.
37.
Moursi M., Wehn N. and Hammoud B. (2025) Smart environmental monitoring of marine pollution using edge AI, arXiv, pp. 1–5. Available at: https://arxiv.org/pdf/2504.21759 (Accessed: 23 July 2025).
38.
Muuga E., Loik R., Kaup G.-H., Savimaa R. and Koort E. (2025) Security threats to the undersea connections related critical infrastructure of the Baltic States: The Baltic Sea in the focus of hybrid warfare. Tallinn: Estonian Academy of Security Sciences. doi: 10.15158/nv7t-kg46.
39.
MXP-1(D) (2002) Multinational submarine and anti-submarine exercise manual. Available at: https://info.publicintelligence.net/NATO-SubmarineManual.pdf (Accessed: 21 September 2025).
40.
NATO Science and Technology Strategy Defining the future, today! (2025). Available at: https://www.nato.int/nato_static_fl2014/assets/pdf/2025/6/pdf/250605-sto-strategy.pdf (Accessed: 28 September 2025).
41.
Naval Technology (2019) HUGIN superior autonomous underwater vehicle (AUV). Available at: https://www.naval-technology.com/projects/hugin-superior-auv (Accessed: 23 September 2025).
42.
NS Energy (2020) Leningrad nuclear power plant-2, 27 July. Available at: https://www.nsenergybusiness.com/projects/leningrad-nuclear-power-plant-2/?cf-view (Accessed: 28 May 2025).
43.
Olczak P. and Surma T. (2023) Energy productivity potential of offshore wind in Poland and cooperation with onshore wind farm, ‘Energy productivity potential of offshore wind in Poland and cooperation with onshore wind farms’, Applied Sciences, 13(7), 4258. doi: 10.3390/app13074258.
44.
Omitola T., Downes J., Wills G., Zwolinski M. and Butler M. J. (2018) Securing navigation of unmanned maritime systems, 31 August. Available at: https://api.semanticscholar.org/CorpusID:85450882 (Accessed: 20 September 2025).
45.
Pająk K. (2019) ‘Managing maritime spatial on an example of the Baltic Sea’, in Gajda W., Soroka P., Zaplatynskyi V. (eds.), Modern aspects of Management, part 2. Warsaw-Kiev: Warsaw Management School Graduate and Postgraduate/Academy of Safety and Basics of Health, pp. 166–171.
46.
Pająk K. (2023) ‘ Folating solar photovoltaic as a source of clean energy and challenge for maritime spatial planning and security environment’, Rocznik Bezpieczeństwa Morskiego AMW, XVII, pp. 189–203. doi: 10.5604/01.3001.0054.1186.
47.
Pająk K. (2024) Submarine revolution 3.0: Unleashing the potential of autonomous underwater vehicles in naval warfare. Warsaw: Elipsa.
48.
Paulraj J., Raghuraman B., Gopalakrishnan N. and Otoum Y. (2025) Autonomous AI-based cybersecurity framework for critical infrastructure: Real-time threat mitigation, arXiv. Available at: https://arxiv.org/pdf/2507.07416 (Accessed: 20 September 2025).
49.
Prasad D.K., Rajan D., Rachmawati L., Rajabaly E., and Quek C. (2016) Video processing from electro-optical sensors for object detection and tracking in maritime environment: A survey, arXiv. Available at: https://arxiv.org/abs/1611.05842 (Accessed: 20 September 2025).
50.
Qi H., Hu S., Zhang J. and Wu G. (2025) ‘Review of hybrid aerial underwater vehicle: Potential applications in the field of underwater marine optics. Drones, 9(10), art. no. 667. doi: 10.3390/drones9100667.
51.
Queralta J.P., Raitoharju J., Gia T.N., Passalis N. and Westerlund T. (2020) AutoSOS: Towards multi-UAV systems supporting maritime search and rescue with lightweight AI and Edge computing, arXiv, 7 May, pp. 1–6. doi: 10.48550/arXiv.2005.03409.
52.
Sari A. (2025) ‘ Protecting maritime infrastructure from hybrid threats: Legal options’, Hybrid CoE Research Report 14, The European Centre of Excellence for Countering Hybrid Threats. Available at: y (Accessed: 12 December 2025).
53.
Savitz S. (2024) Uncrewed maritime vessels: Shaping naval power in hybrid threat operations, Hybrid CoE working paper 34, The European Centre of Excellence for Countering Hybrid Threats. Available at: https://www.hybridcoe.fi/wp-content/uploads/2024/10/20241007-HybridCoE-Working-Paper-34-Uncrewed-maritime-vessels-WEB.pdf (Accessed: 29 September 2025).
54.
Stockmayer V. and Lehmann A. (2023) ‘ Variations of temperature, salinity and oxygen of the Baltic Sea for the period 1950 to 2020’, Oceanologia, 65(3), pp. 466–483. doi: 10.1016/j.oceano.2023.02.002.
55.
Trzciniak-1. Prognozowanie parametrów hydrologicznych i propagacji fal dźwiękowych w wodnym ośrodku południowego Bałtyku. (1978) Gdynia: WSMW.
56.
Unlap A. (2024) AI-Driven predictive analytics: Shaping the future of strategic decision-making. doi: 10.13140/RG.2.2.22309.41447.
57.
Uusipaavalniemi S. and Juha-Anterko P. (2025) The Russian shadow fleet bolstering hybrid threat activities: A challenge to security, The European Centre of Excellence for countering Hybrid Threats, February. Available at: https://www.hybridcoe.fi/wp-content/uploads/2024/05/20240530-Hybrid-CoE-Working-Paper-32-Russias-hybrid-threat-tactics-WEB.pdf (Accessed: 12 December 2025).
58.
Wang J., Zhou K., Xing W, Li H. and Yang Z. (2023) Applications, evolutions, and challenges of drones in maritime transport, Journal of Marine Science and Engineering, 11(11), 2056. doi: 10.3390/jmse11112056.
59.
Vattenfall (2025) Ringhals. Available at: https://powerplants.vattenfall.com/en/ringhals/ (Accessed: 28 May 2025).