RESEARCH PAPER
Near-Earth Objects (NEO) and other current space threats
 
More details
Hide details
1
Faculty of National Security, War Studies University, Poland
CORRESPONDING AUTHOR
Radosław Bielawski   

Faculty of National Security, War Studies University, Poland
Submission date: 2020-01-23
Acceptance date: 2020-02-02
Online publication date: 2020-03-17
Publication date: 2020-03-26
 
Security and Defence Quarterly 2020;28(1):1–18
 
KEYWORDS
TOPICS
ABSTRACT
The subject of the study are space threats – Near-Earth Objects (NEO) and Potentially Hazardous Asteroids (PHA). The research methods employed in this article included the classic theoretical methods used in security sciences and a practical method – a quantitative study of social media. At present, space threat studies aim to resolve the terminological confusion related to NEOs, determine currently and potentially hazardous space objects and estimate the potential threats they could cause. Another expected result of the research is to present two literature methods for estimating NEO threats, the Palermo and Torino scales. The practical result is to evaluate public mood regarding NEO threats. Studies have shown that certain active space objects are capable of reaching the Earth's surface or impacting human-made in-space objects and devices, such as communication satellites. Should it happen, it could cause substantial social damage and destabilise state security, particularly if elements of critical infrastructure of the state were to be affected. Continuous monitoring of NEOs may play a central role in the provision of security. Furthermore, the public should be kept abreast of the threats.
 
REFERENCES (24)
1.
Binzel, R. P. (2000) ‘The Torino Impact Hazard Scale’, Planetary and Space Science, 48(4), pp. 297–303. doi:10.1016/S0032-0633(00)00006-4.
 
2.
Brown, P., Spalding, R. E., ReVelle, D. O., Tagliaferri, E. and Worden, S. P. (2002) ‘The flux of small near-Earth objects colliding with the Earth’, Nature, 420(6913), pp. 294–296. doi: 10.1038/nature01238.
 
3.
Carruba, V. and Ribeiro, J. V. (2019) ‘The Zelima asteroid family: Resonant configuration and rotational fission clusters’, Planetary and Space Science, p. 104810. doi: 10.1016/j.pss.2019.104810.
 
4.
Chesley, S. R., Chodas, P. W., Milani, A., Valsecchi, G. B. and Yeomans, D. K. (2002) ‘Quantifying the Risk Posed by Potential Earth Impacts’, Icarus, 159(2), pp. 423–432. doi: 10.1006/icar.2002.6910.
 
5.
Dai, W. and Hu, Z. (1980) ‘On the origin of the asteroids’, Chinese Astronomy, 4(1), pp. 33–44. doi:10.1016/0146-6364(80)90059-6.
 
6.
Domalewska, D. (2019) ‘The role of social media in emergency management during the 2019 flood in Poland’, Security and Defence Quarterly. doi: 10.35467/sdq/110722.
 
7.
Giorgini, J. D., Benner, L. A. M., Ostro, S. J., Nolan, M. C., Busch, M. W. (2008) ‘Predicting the Earth encounters of (99942) Apophis’, Icarus, 193(1), pp. 1–19. doi: 10.1016/j.icarus.2007.09.012.
 
8.
Kanamaru, M., Sasaki, S. and Wieczorek, M. (2019) ‘Density distribution of asteroid 25143 Itokawa based on smooth terrain shape’, Planetary and Space Science, 174, pp. 32–42. doi: 10.1016/j.pss.2019.05.002.
 
9.
Karimi, R., Azmoudeh Ardalan, A. and Vasheghani Farahani, S. (2017) ‘The size, shape and orientation of the asteroid Vesta based on data from the Dawn mission’, Earth and Planetary Science Letters, 475, pp. 71–82. doi: 10.1016/j.epsl.2017.07.033.
 
10.
Kartashova, A. P., Popova O. P., Glazachev, D. O., Jenniskens, P., Emel’yanenko, V. V., Podobnaya, E. D. and Skripnik, A.Ya (2018) ‘Study of injuries from the Chelyabinsk airburst event’, Planetary and Space Science, 160, pp. 107–114. doi:10.1016/j.pss.2018.04.019.
 
11.
Królikowska, M., Sitarski, G. and Sołtan, A. M. (2009) ‘How selection and weighting of astrometric observations influence the impact probability. The case of asteroid (99942) Apophis’, Monthly Notices of the Royal Astronomical Society, 399(4), pp. 1964-1976. doi: 10.1111/j.1365-2966.2009.15276.x.
 
12.
de Leon, J., Ortiz, J. L, Pinilla-Alonso, N., Cabrera-Lavers, A., Alvarez-Candal, A., Morales, N., Duffard, R., Santos-Sanz, P., Licandro, J., Perez-Romero, A., Lorenzi, V. and Cikota, S. (2013) ‘Visible and near-infrared observations of asteroid 2012 DA14 during its closest approach of February 15, 2013’. doi:10.1051/0004-6361/201321373.
 
13.
McCord, T. B., Morris, J., Persing, D., Tagliaferri, E., Jacobs, C., Spalding, R., Grady, L. and Schmidt, R. (1995) ‘Detection of a meteoroid entry into the Earth’s atmosphere on February 1, 1994’, Journal of Geophysical Research, 100(E2), p. 3245. doi:10.1029/94JE02802.
 
14.
Metzger, P. T., Sykes, M. V., Stern, A. and Runyon, K. (2019) ‘The reclassification of asteroids from planets to non-planets’, Icarus, 319, pp. 21–32. doi: 10.1016/j.icarus.2018.08.026.
 
15.
Morrison, D., Harris, A.W., Sommer, G., Chapman, C. E. and Carusi, A. (2002) ‘Dealing with the Impact Hazard’, in Asteroids III, W. F. Bottke Jr., A. Cellino, P. Paolicchi, and R. P. Binzel (eds), University of Arizona Press, Tucson, p.739-754, pp. 739–754.
 
16.
Morrison, D., Chapman, C. R., Steel, D. and Binzel, R. P. (2004) ‘Impacts and the public: communicating the nature of the impact hazard’, in Mitigation of Hazardous Comets and Asteroids. Cambridge University Press, pp. 353–390. doi:10.1017/CBO9780511525049.018.
 
17.
Moskovitz, N. A., Nicholas A.Moskovitza, Benson, C. J., Scheeres, D., Endicott, T., Polishook, D. Binzele, R., DeMeo, F., Ryan, W., Ryan, E., Willman, M., Hergenrother, C., Verveer, A., Lister, T., Birtwhistle, P., Sickafoose, A., Nagayama, T., Gilmore, A., Kilmartin, P., Benecchi, S., Sheppard, S., Marchis, F., Augusteijn, T. and Smirnova, O. (2019) ‘Observational investigation of the 2013 near-Earth encounter by asteroid (367943) Duende’, Icarus, p. 113519. doi: 10.1016/j.icarus.2019.113519.
 
18.
NASA (2013) Our Solar System. NASA.
 
19.
Oshtrakh, M. I., Maksimova, A. A., Chukin, A. V., Petrova, E. V., Jenniskens, P., Kuzmann, E., Grokhovsky, V. I., Homonnay, Z. and Semionkin, V. A. (2019) ‘Variability of Chelyabinsk meteoroid stones studied by Mössbauer spectroscopy and X-ray diffraction’, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 219, pp. 206–224. doi: 10.1016/j.saa.2019.03.036.
 
20.
Peter, N., Barton, A., Robinson, D. and Salotti, J. M (2004) ‘Charting response options for threatening near-Earth objects’, Acta Astronautica, 55(3–9), pp. 325–334. doi: 10.1016/j.actaastro.2004.05.031.
 
21.
Pezent, J., Sood, R. and Heaton, A. (2019) ‘High-fidelity contingency trajectory design and analysis for NASA’s near-earth asteroid (NEA) Scout solar sail Mission’, Acta Astronautica, 159, pp. 385–396. doi: 10.1016/j.actaastro.2019.03.050.
 
22.
Slobodrian, R. and Rioux, C. (2002) ‘Planetoids formed as fractal aggregates from fine particle and vapor clouds’, Chaos, Solitons & Fractals, 14(1), pp. 19–21. doi: 10.1016/S0960-0779(01)00145-X.
 
23.
The Center for Near-Earth Object Studies (CNEOS) (2019) Available at: https://cneos.jpl.nasa.gov/.
 
24.
The International Astronomical Union (2020) Available at: https://www.iau.org/.
 
eISSN:2544-994X
ISSN:2300-8741