RESEARCH PAPER
The future of energy security of states
 
More details
Hide details
1
Akademia Sztuki Wojennej; Wydział Bezpieczeństwa Narodowego; Instytut Studiów Strategicznych, Poland
CORRESPONDING AUTHOR
Jarosław Jerzy Gryz   

Akademia Sztuki Wojennej; Wydział Bezpieczeństwa Narodowego; Instytut Studiów Strategicznych, Poland
Online publication date: 2020-06-24
Publication date: 2020-06-25
Submission date: 2020-04-11
Final revision date: 2020-06-08
Acceptance date: 2020-06-08
 
Security and Defence Quarterly 2020;29(2):21–37
KEYWORDS
TOPICS
ABSTRACT
The work focuses on the controversy about technological progress and unlimited access to all kinds of energy acquisition, storage and distribution. It suggests a formula for energy acquisition and usage which embraces issues of peace and war, social conflicts, and stability determined by access to energy conditioned by the state of the climate of our planet. The question is how will an interdisciplinary combination of progress and future implementation of technologies influence energy security of states and social entities, their natural environment, up to 2030 and beyond? The methods used in the work rely on a non – linear approach to disruptive technologies combined with empirical verifiability of scientific progress in the field of energy acquisition and use. They are reinforced with drivers taken from development scenarios gained through technological development in quantum mechanics, molecular biology, and computational techniques. The result is a conceptual approach to energy acquisition and distribution for states, their communities and individuals regardless of whether the technologies are “civil” or “military” in their essence. The recalled disruptive technologies shape factors of social development and create conditions for human existence and the natural environment that influence the security of states and social entities. The development of automation and robotics, digital transformation, bio-technologies and cognitive science creates new energy security for states, social entities and the natural environment. Technologies for the generation, processing and distribution of energy create an almost unlimited perspective of reconfiguration of existing forms of life and their safety
 
REFERENCES (63)
1.
Agustoni, A. and Maretti, M. (2012) ‘Energy and social change: an introduction’, International Review of Sociology, 22(3), pp. 391–404. doi: 10.1080/03906701.2012.730820.
 
2.
Berkley, S. (2019) ‘Safeguarding Health in a Warming World’, Project Syndicate. Available at: https://www.project-syndicate.... (Accessed 6 January 2020).
 
3.
Bojanic, D. (2015) ‘Securitisation and macro-securitisation of energy’, Security and Defence Quarterly, 6(1), pp.37–62. doi:10.5604/23008741/1152451.
 
4.
BP Energy Outlook 2035 Available at: https://knoema.com/azxrwhd/bp-... (Accessed 5 June 2020).
 
5.
Cartlidge, E. (2017) ‘A new genetic revolution’, Technologist. Available at: https://www.technologist.eu/a-... (Accessed 18 December 2019).
 
6.
Codevilla, A. M. (1989) ‘Political Warfare’ in Barnett, F. F. and Carnes, L. (eds) Political Warfare and Psychological Operations. Rethinking the US Approach. Washington: National Defense University Press, pp. 78–79.
 
7.
Cooker, Ch. (2004) The Future of War. The Re-enchantment of War in the Twenty-first Century. Malden: Blackwell Publishing.
 
8.
Cruciani, F., La Fratta, R., Santolamazza, P., Sellitto, D., Pascone, R., Moral, P., Watson, E., Guida, V.,. Colomb, E. B., Zaharova, B., Lavinha, J., Vona, G., Aman, R., Cali, F., Akar, N., Martin, R., Torroni, A., Novelletto, A., and Scozzari, R. (2004) ‘Report Phylogeographic Analysis of Haplogroup E3b (E-M215) Y. Chromosomes Reveals Multiple Migratory Events Within and Out Of Africa’, American Society of Human Genetics, 74, pp. 1014–1022. doi: 10.1086/386294.
 
9.
Cudworth, E. (2009) ‘Nature, Culture, Technology: Myths and Inequalities in the Posthuman Zoo’, in Burnett J., Senker P. and Walker K. (eds) The Myths of Technology: Innovation and Inequality. New York: Peter Lang Publishing, pp. 131–143.
 
10.
Dias, R. P. and Silvera, I. F. (2017) ‘Observation of the Wigner-Huntington transition to metallic hydrogen’, Science 355(6326), pp. 715–718. doi: 10.1126/science.aal1579.
 
11.
Duffield, J. S. (2012) ‘The Return of Energy Insecurity in the Developed Democracies’, Contemporary Security Policy, 33(1), pp. 1–26. doi: 10.1080/13523260.2012.659571.
 
12.
Energy no date. Encyclopedia Britannica Available at: https://www.britannica.com/sci... (Accessed 16 June 2019).
 
13.
Ferry, L. (2019) Rewolucja transhumanistyczna. Jak technomedycyna i uberyzacja świata zmieniają nasze życie. Available at: https://wszystkoconajwazniejsz... (Accessed 12 December 2019).
 
14.
Galeon, D. (2017) ‘Scientists Have Finally Created Metallic Hydrogen Scientists just made what could be the rarest and most valuable material on the planet’, Futurism. Available at: https://futurism.com/scientist... (Accessed 14 December 2019).
 
15.
Gillian, D. (2020) ‘How does cloud-seeding in the UAE work?’ The National UAE. Available at: https://www.thenational.ae/uae... (Accessed 5 January 2020).
 
16.
Georgilakis, P. S. and Hatziargyriou, N. D. (2015) ‘A review of power distribution planning in the modern power systems era: Models, methods and future research’, Electric Power Systems Research, 121, pp. 90–99. doi:10.1016/j.epsr.2014.12.010.
 
17.
Goldstein, J. S. and Qvist, S. A. (2019) A bright future: how some countries have solved climate change and the rest can follow. New York: Public Affairs.
 
18.
Gołkowski, M., Inan, U. S., Gibby, A. R., and Cohen, M. B. (2008) ‘Magnetospheric amplification and emission triggering by ELF/VLF waves injected by the 3.6 MW HAARP ionospheric heater’, Journal of Geophysical Research, 113, pp. 1–12. doi:10.1029/2008JA013157.
 
19.
Grace, K., Salvatier, J., Dafoe, A., Zhang, B., and Evans, O. (2018) ‘When Will AI Exceed Human Performance? Evidence from AI Experts’, Journal of Artificial Intelligence Research; 1–5.
 
20.
Gryz, J. (2018) Bezpieczeństwo energetyczne: związki między nauką, polityką a rzeczywistością. In Bezpieczeństwo energetyczne. Koncepcje - wyzwania – interesy; Gryz J., Podraza A., Ruszel M., Eds.; Wydawnictwo PWN: Warszawa, Polska, pp. 33–41.
 
21.
Hao, K. (2019) Three charts show how China’s AI industry is propped up by three companies, Artificial Intelligence, MIT Technology Review [online]. Available from: https://www.technologyreview.c... (Assessed 29.12.2019).
 
22.
Harrison, T., Johnson, K., Roberts, T. G. (2018) Space Threat Assessment 2018. Washington: Center for Strategic & International Studies. Available at: https://www.csis.org/analysis/... (Accessed: 10 December 2019).
 
23.
Hidy, G. M., Chow, J. C., England, G. C., Legge, A. H., Lloyd, A. C. and Watson, J. G. (2012) ‘Energy supplies and future engines for land, sea, and air’, Journal of the Air & Waste Management Association, 62(11), pp. 1236–1242. doi:10.1080/10962247.2012.737277.
 
24.
Chen, S. Could this new Chinese radar system really be used to play God with the weather? Available at: https://www.scmp.com/news/chin... (Accessed 5 January 2020).
 
25.
Chorąży, M. (2009) ‘Gen strukturalny – ewolucja pojęcia i dylematy’, Nauka, 3, pp. 57–108.
 
26.
Kaku, M. (2000) Wizje Jak nauka zmieni świat w XXI wieku. Poznań: Prószyński i S-ka.
 
27.
van Lanen, D., Walker, S. B., Fowler, M., and Mukherjee, U. (2016) ‘Market mechanisms in power-to-gas systems’, International Journal of Environmental Studies, 73(3), pp. 379–389. doi:10.1080/00207233.2016.1165475.
 
28.
Lasi, H. and Kemper, H. G. (2014) ‘Industry 4.0’, Business & Information Systems Engineering, 4, pp. 239–242.doi:10.1007/s12599-014-0334-4.
 
29.
Latiff, R. H. (2018) Wojna przyszłości w obliczu nowego globalnego pola bitwy. Warsaw: Wydawnictwo Naukowe PWN.
 
30.
Lee, J., Bagheri, B. and Kao, H. A. (2015) ‘A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems’, Manufacturing Letters 3, pp. 18–23.
 
31.
Li, X., Duan, B., Song, L., Yang, Y., Zhang, Y., and Wang, D. (2017) ‘A new concept of space solar power satellite’, Acta Astronautica, 136. doi: 10.1016/j.actaastro.2017.03.017.
 
32.
Li, Z., Shahidehpour, M., Liu, X. (2018) ‘Cyber-secure decentralized energy management for IoT-enabled active distribution networks’, Journal of Modern Power Systems and Clean Energy, 6, pp. 900–91. doi:10.1007/s40565-018-0425-1.
 
33.
Lomborg, B. (2017) ‘Geoengineering Climate Change’, Project Syndicate. Available at: https://www.projectsyndicate.o... (Accessed 5 January 2020).
 
34.
Majumdar, D., Kumar Banerji, P. and Chakrabarti, S. (2018) ‘Disruptive technology and disruptive innovation: ignore at your peril!’ Technology Analysis & Strategic Management, 30(11), pp. 1247–1255.
 
35.
Mankins, J. C. (2014) The Case for Space Solar Power. Huston: Virginia Edition Publishing.
 
36.
Mesko, B. (2017) ‘The role of artificial intelligence in precision medicine’, Expert Review of Precision Medicine and Drug Development, 5(2), pp. 239–241. doi: 10.1080/23808993.2017.1380516.
 
37.
Meyl, K. (2016) Der Skalarwellenkrieg Sachbuch mit autobiographischem Bezug, Villingen-Schwenningen : INDEL GmbH.
 
38.
Mulligan, S. (2011) ‘Energy and human ecology: a critical security approach’, Environmental Politics, 20(5), pp. 633–649.
 
39.
Murabit, A. and Bücken, L. (2019) ‘The Myth of Climate Wars?’ Project Syndicate. Available at: https://www.project-syndicate.... (Accessed 6 June 2019).
 
40.
Müller, V. C. and Boström, N. (2016) ‘Future Progress in Artificial Intelligence: A Survey of Expert Opinion’, in Müller V.C. (ed.) Fundamental Issues of Artificial Intelligence. Berlin: Springer International Publishing, pp. 533–571.
 
41.
National Climate Change Plan of the United Arab Emirates 2017-2050 (2017) United Arab Emirates Ministry of Climate Change & Environment, pp. 24–41.
 
42.
NATO (2017) Strategic Foresight Analysis. 2017 Report. Available at: https://www.act.nato.int/activ... (Accessed: 10 December 2019).
 
43.
Paska, J. (2017) Rozproszone źródła energii. Warsaw: Oficyna Wydawnicza Politechniki Warszawskiej.
 
44.
Pinker, S. (2018) Enlighment Now: The Case for Reason, Science, Humanism, and Progress. New York: Penguin Random House.
 
45.
Pleßmanna, G., Erdmannb, M., Hlusiaka, M. and Breyera, Ch. (2014) ‘Global energy storage demand for a 100% renewable electricity supply’, Energy Procedia, 46, pp. 22 – 31. doi: 10.1016/j.egypro.2014.01.154.
 
46.
Popczyk, J. (2011) Energetyka rozproszona od dominacji energetyki w gospodarce do zrównoważonego rozwoju, od paliw kopalnych do energii odnawialnej i efektywności energetycznej. Warsaw: Fundacja Ekonomistów Środowiska i Zasobów Naturalnych. Available at: https://www.cire.pl/pliki/2/e_... (Accessed 5 December 2019).
 
47.
Popper, R. (2008) ‘Foresight Methodology’, in Georghiou, L., Cassingena Harper, J., Keenan, M., Miles, I. and Popper, R. (eds) The Handbook of Technology Foresight. Concepts and Practice, Cheltenham Massachusetts: Edward Elgar Publishing, pp. 44–88.
 
48.
Ramanathan, V., Seddon, J., and Victor, D. G. (2016) ‘The Next Front on Climate Change. How to Avoid a Dimmer, Drier World’, Foreign Affairs, 96(2), pp. 136–141.
 
49.
Riley, K. (2017) ‘China Set to Release the World’s Fastest Computer. This supercomputer will be 200 times faster than the 2010 world’s fastest’, Futurism. Available at: https://futurism.com/china-set... (Accessed 14 December 2019).
 
50.
Runowski, M. (2014) ‘Nanotechnologia – nanomateriały, nanocząstki i wielofunkcyjne nanostruktury typu rdzeń/powłoka’, Chemik, 68(9), pp. 766–775.
 
51.
Rus, D. (2015) ‘The Robots Are Coming How Technological Breakthroughs Will Transform Everyday Life’, Foreign Affairs. Available at: https://www.foreignaffairs.com... (Accessed 16 December 2019).
 
52.
Sergentu, V., Ursaki, V., Ioisher, A., and Eliezer, A. (2019) ‘Solar energy concentrators in geostationary orbits’, Proceedings of the Romanian Academy, 20, pp. 151–157.
 
53.
Sovacool, B.K. and Brossmann, B. (2014) ‘The rhetorical fantasy of energy transitions: implications for energy policy and analysis’, Technology Analysis & Strategic Management, 26(7), pp. 839–850. doi:10.1080/09537325.2014.905674.
 
54.
Future Today Institute (2019) Tech Trends Report 2019. 12th Annual Edition. Available at: https://futuretodayinstitute.c... (Accessed: 10 December 2019).
 
55.
Tvaronavičienė, M., Mačiulis, A., Lankauskienė, T., Raudeliūnienė, J., Dzemyda, I. (2015) ‘Energy security and sustainable competitiveness of industry development’, Economic Research-Ekonomska Istraživanja, 28(1), pp. 502–515. doi:10.1080/1331677X.2015.1082435.
 
56.
van Lier, B. (2015) ‘The enigma of context within network-centric environments’, Cyber-Physical Systems, 1(1), pp. 51–61. doi:10.1080/23335777.2015.1036776.
 
57.
van Raden, J. M. and Jasti, R. (2019) ‘How to make interlocked nanocarbons Interlocked nanocarbon rings have promising properties for molecular machines’, Science, 365 (6450), pp. 216–217. doi:10.1126/science.aay2861.
 
58.
Wünderlich, N., Wangenheim, F., Bitner, M. J. (2013) ‘High Tech and High Touch’, Journal of Service Research, 16, pp. 3–20. doi:10.1177/1094670512448413.
 
59.
Waters, C. N., Zalasiewicz, J., Summerhayes, C., Barnosky, A. D., Poirier, C., Gałuszka, A., Cearreta, A., Edgeworth, M., Ellis, E. C., Ellis, M., Jeandel, C., Leinfelder, R., McNeill, J. R., Richter, D., Steffen, W., Syvitski, J., Vidas, D., Wagreich, M., Williams, M., Zhisheng, A., Grinevald, J., Odada, E., Oreskes, N., and Wolfe A. P. (2016) ‘The Anthropocene is functionally and stratigraphically distinct from the Holocene’, Science , 351(6269). doi:10.1126/science.aad2622.
 
60.
White Paper, Holistic architectures for future power systems (2019) European Technology and Innovation Platform, Smart Networks for Energy Transition, 3-6. Available at: https://www.etip-snet.eu/wp-co... (Accessed 17 December 2019).
 
61.
Wiśnicki, J. (2010) ‘Broń geofizyczna orężem XXI wieku’, Przegląd Wojsk Lądowych, 2.
 
62.
Wrzosek, M. (2018) ‘Wojny Przyszłości. Doktryna, techniki, operacje militarne’, Fronda: Warsaw, pp. 114-133.
 
63.
World Energy Scenarios Composing energy futures to 2050 (2013) World Energy Council, 12-26 Available at: https://www.worldenergy.org/as... (Accessed 17 December 2019).
 
eISSN:2544-994X
ISSN:2300-8741